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LETTER TO THE EDITOR 

Long-range order in tetragonal antiferromagnets 
supported by quantum fluctuations 

E Rastelli, S Sedazzari and A Tassi 
Dipartimento di Fisica dell’Universiti,43100 Parma, Italy 

Received 25 April 1989 

Abstract. The nature of the phase transition in body-centred-tetragonal helimagnets is an 
argument of current theoretical interest both because high-T, superconductors have just this 
structure and because the experimental data in a large number of rare earths and transition- 
metal compounds have suggested divergent interpretations and even the possible violation 
of the universality in second-order phase transitions. The theoretical approaches mainly 
employed are renormalisation-group analysis and Monte Carlo simulations. Both 
approaches are based on classical approximations. On the other hand we find that quantum 
fluctuations play an essential role in the low-temperature configuration in at least some 
regions of the parameter space. We find indeed that the model we consider can show full 
frustration in classical approximations. This frustration is lifted by the zero-point motion. 
The long-range order caused by quantum fluctuations differs from the order supported by 
thermal fluctuations andit isstable until a surprisingly high temperature: the order supported 
by quantum disorder prevails against the order supported by thermal disorder. 

An impressive revival of the Heisenberg model with particular emphasis on the tetra- 
gonal lattice has been taking place because the magnetic properties of such models are 
believed to be relevant to the understanding of high-T, superconductivity [l]. This new 
interest combines with a formerly active research area stimulated by the importance of 
the Heisenberg Hamiltonian as a model for a large number of magnetic insulators [2]. 
At present many questions both of basic and experimental interest await satisfactory 
answers. The nature of the phase transition in helimagnets remains an unsolved prob- 
lem. Experimental data on Tb [ 3 ] ,  Dy [4] and Ho [5] are differently interpreted as 
evidence of a first-order phase transition or, on the contrary, as indicating a second- 
order phase-transition, breaking the universality hypothesis. Renormalisation group 
(RG) analysis [6 ,7]  seems to support a first-order phase transition for helimagnets, where 
exchange competition is the source of the non-collinear spin configuration. Finally, 
interesting Monte Carlo (MC) simulations [8,9] for body-centered-tetragonal (BCT) 
helimagnets indicate a first-order phase transition in XY-helimagnets, whereas asecond- 
order phase transition should be expected in Heisenberg helimagnets. We notice that 
both approaches are based on classical approximations. 

Here we consider the model of [8] and [9] but add an in-plane nearest-neighbour 
(NN) interaction J1 that can be stronger than the interactions J2 and J 3 ,  the exchange 
couplings of a spin with its NN laying in the NN and in the next-nearest-neighbour (NNN) 
layers, respectively. J2 andJ3 were taken into account in [8] and [9] but J1 was neglected. 

This Letter comprises the following. 
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Figure 1. A body-centred-tetragonal 
(BCT) antiferromagnet. The exchange 
interactions we consider are indicated 
by J , ,  J 2 ,  J 3 ,  respectively. 

Figure 2. Zero-temperature phase diagram of the classical 
BCT antiferromagnet in the j l j 3  plane. F, AFl ,  A F ~ ,  H, AF 
configurations are described by equations (5)-(14). 

(i) Calculation of the zero-temperature phase diagram of the J1-Jz-J3 model in the 
classical approximation. Infinite degeneration lines for J 3  = 0, - 1 < J 2 / J ,  < 1 and for 
J3 < 0 with J2/J1 = 5 1 are found. 

(ii) A study of the zero-point motion that lifts the infinite degeneracy. 
(iii) Consideration of the low-temperature thermodynamics of the model: we find 

that thermal fluctuations compete with quantum fluctuations. The order obtained by 
quantum disorder, however, turns out to be very hard to destroy, which is at variance 
with the behaviour of the rhombohedral Heisenberg antiferromagnet (RAF), where 
the full frustration entered into by the lattice structure is restored at intermediate 
temperatures by a more efficient outcome of the competition of thermal fluctuations with 
quantum fluctuations [10-12], The results we obtain for the tetragonal antiferromagnet 
seem relevant to the understanding of the magnetic properties of LazCu04 [13]. 

The Hamiltonian we consider is 

where i labels the sites of a BCT lattice and S, is a vector joining the site i with its NN in 
the plane containing the site i ,  if a = 1; in the NN layers, if a = 2; and in the NNN layers, 
if a = 3, as shown in figure 1. We choose J1 < 0, while J2 andJ3 can have either signs. 
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In the classical approximation (S + w) the ground-state energy of our model if the 
spins spiral according to a helical configuration characterised by the Q wavevector is 

Eo = -2J1S2N(cos U&, + COS uQ,) - 8J2S2Ncos $uQ, COS &IQ, COS kQ, 
- 2J3S2Ncos cQ, (2) 

where a is the in-plane lattice constant and cis the distance between two NNN layers. The 
x and y axis are along two in-plane-perpendicular NN rows, and the z axis is along the c 
axis. 

Let us define the reduced energy and exchange couplings as follows 

eo = Eo/21JllS2N j 2  =J2IJ1 j 3  = J3IJ1. (3)  

sin BaQ, (cos BaQ, + 2j2 cos BaQ, cos BcQ,) = 0 (4a) 

sin BaQ, (cos b Q ,  + 2j2 cos hue, cos i ce , )  = 0 (4b) 

sin ace,  ( jz  cos 3aQ, cos BaQ, + j3 cos BcQ,) = 0 (4c) 

The minimum conditions for eo are 

The solutions of (4) correspond to the following. 

(i) A ferromagnetic (F) configuration whose wavevector and reduced energy are 

Q = O  ( 5 )  
eF  = 2 + 4j2 + j3. (6) 

The F phase is limited to the regions j2 < -1 for j3 < 0, j3 < -2j2 - 2 for j3 > 0 with 
-2 < j2 < -1 andj, < -j2forj3 > 0 with j2 < -2. 

(ii) An antiferromagnetic (AFI) configuration where 

eAF1 = -2 + j3. (8) 

This phase is confined between the straight lines j2 = +1 for j3 < 0. The line j ,  = 0, 
-1 < j 2  < 1 is an infinite degeneration line because Q, = Q, = n / a  but Q, is arbitrary. 
The boundary lines j2 = k l ,  j3 < 0 are also infinite degeneration lines with Q, = 0, 
Q, = Qy + 2n/a and Qy arbitrary. 

(iii) An antiferromagnetic ( A F ~ )  configuration where 

Q, = Qy = 0 Q, = 2x/c (9) 

eAFZ = 2 - 41, + j,. (10) 

The A F ~  phase is stable for j2 > 1 when j3 < 0, for j3 < 2j2 - 2 when 1 < j2 < 2 and for 
j 3  < j2 when j2 > 2. 

(iv) A helical (H) configuration where 

Q, = Qy = 0 Q, = ~ o s - ~ ( - - h / j d  (11) 

eH = 2 - 2ji/j3 - j3 .  (12) 

The H phase is stable for j2 > 2 with j2 < j, < ji/2 and for j2 < -2 with -j2 < j3 < j!/2. 
(v) An antiferromagnetic (AF) phase where 
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Q x = Q  y = JGIa Q,  = n / c  (13) 

eAF = -2 - j,. (14) 

TheAFphaseis~tablefor j~ > j$ /2 i f j2< -20 r j2>2 , fo r j3>  -2j2 - 2if - 2 < j 2 <  -1, 
fori3 > 0 if -1 < j 2  < 1, and forj, > 2j2 - 2 if 1 < j 2  < 2. 

Figure 2 shows the zero-temperature phase diagram of the BCT classical anti- 
ferromagnet in the j2-j3 plane. 

To get quantum corrections to the classical ground state and the magnon-excitation 
spectrum we perform the customary steps [14]: we introduce a local quantisation axis 
spiralling according to a helix characterised by the wavevector Q ;  we transform the spin 
operators to Bose creation and destruction operators by the Dyson-Maleev trans- 
formation, and finally we diagonalise the Bosonic equivalent Hamiltonian by keeping 
contributions proportional to S2 and S. 

The ground-state energy we obtain is 

where Eo is given by (2) and hmk is the magnon energy-dispersion curve given by 

hwk = 4lJ1 lS(Skdk) 1'2 (16) 

where 

s k  = cos aQ, + cos aQ, - cos ak, - cos ak, + 4j2(cos iaQ, cos f a Q ,  cos IcQ, 

- cos fak ,  cos f a k ,  cos f ck , )  + j3(cos cQ, - cos ck , )  (17) 

d k  = cos aQx( l  - cos ak,)  + cos uQ,(1 - cos ak,)  

+ 4jj,{COS iaQ,[cos f a Q ,  cos BcQ,(l - cos hak, cos iak,  cos k k , )  

- sin f a Q ,  sin ice, sin iak,  cos f a k ,  sin tck,]  

- sin i a Q ,  sin tak,  [sin taQ,  cos f cQ ,  sin fak ,  cos f c k ,  

+ cos iaQ,  sin IC&, cos tak,  sin k k , ] )  

+ j ,  cos cQ,(1 - cos ck , ) .  (18) 

We focus our interest on the model with j ,  = 0, -1 < j 2  < 1 where Q, = Q, = n / a  and 
Q, is arbitrary. We stress that this is a region of physical interest, because we expect 
small values of j ,  and j,. In the classical approximation (5'- CO) we have found that 
the in-plane correlation is antiferromagnetic but any inter-plane phase relationship is 
allowed. An analogous behaviour is found in the classical RAF model [lo-121, where an 
effective competition is entered into by the lattice structure that claims, for a 120"-three- 
sublattice, an in-plane configuration, but where the inter-plane coupling would prefer a 
collinear inter-plane configuration, so that a full frustration appears. In that model we 
have found [ l l ]  that the zero-point motion chooses a particular helix belonging to the 
infinite degeneration classical set: order is established by  quantum disorder. 
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Table 1. Values of zero-point motion energy A(Q,) for Q, = 0 and Q, = n / c  at selected 
values of j z .  

1 2  N O )  A(nlc)  

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

1.68411 
1.721 93 
1.757 14 
1.78968 
1.81944 
1.84622 
1.86971 
1.88943 
1.90453 
1.91335 
1.909 94 

1.684 11 
1.72260 
1.75993 
1.79620 
1.831 50 
1.865 93 
1.89954 
1.93240 
1.96455 
1.99606 
2.026 95 

Here we search for an analogous phenomenon in the BCT antiferromagnet. The 
reduced ground-state energy is 

eG = EG/2/J11S2N = eo(l  + 1/S) + (l/S)A (19) 
where eo = -2 and A is given by 

A = 1; lon lon dx dy dz[{s[d, - 4j2d2 cos (cQ, /~) ]> ' /~  2n3 

+ { ~ [ d l  + 4Ld2 cos < ~ Q , / 2 ) 1 ) ~ / ~ 1  

S = 2 + COSX + COSY f 4j2 COS&XCOS&y COS&Z 

dl = 2 - c o s x  - COSY 

d2 = sin ix sin iy cos &z. 

(20) 

(21) 

(22) 

(23) 

where 

In table 1 we give the value of A with Q, = 0 and Q, = n / c  for selected values of j 2 .  
Notice that A assumes its minimum value for Q, = 0 and its maximum value for Q, = 
J C / C .  In the smallj2 limit it is possible to expand A in a series of powers 0fj2 as follows 

A(Q,) = a. + a l j z  - a z j i  - b2ji  cos2 (cQ,/2) (24) 
where 

a. = +lon n lon dxdy(sld1)1/2 

a l  = ;lon lon dx dy (d l /~1)1 /2  cos (x/2) cos (y/2) 

a 2  = -!- lon lon dx dy ( d 1 / ~ 1 ) 1 / 2  

n 

cos2 (x /2)  cos2 ( y / 2 )  
n2 $1 

1 sin2 (x /2)  sin2 (y/2) 
dl 
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s1 and dl are given by (21) withj, = 0 and by (22), respectively. The modulation of A(Q,), 
which appears at orderj200442, selects the helix with Q, = 0. The numerical value of bz is 
0.065062, so that A(n/c) - A(0) evaluated by (24)-(28) differs from the exact one (see 
table 1) by a few per cent untiljz = 0.2. For this reason we may conclude that (24) is a 
realistic approximation for a large number of tetragonal antiferromagnets as, for 
instance, La2Cu04 [13]. Notice that the zero-point motion favours the AF1 configuration 
(Q, = Qy = n / a ,  Q, = 0) that in the classical approximation should be stable forj, < 0, 
whereas for j 3  > 0 the AF configuration with Q, = Qy = n / a ,  Q, = n /c  would become 
stable. This indicates an enhancement due to quantum fluctuations of the stability region 
of the AFI configuration at the expense of the AF configuration. Unfortunately the 
evaluation of the zero-point motion energy as function of the Q wavevector away from 
the degeneration line is impossible because the magnon energy ho, is well defined only 
for the classical helix wave vector Q,. This is a well known limitation of the perturbation 
approach for helix configurations [15]. Anyway, we stress the relevance of quantum 
fluctuations that are able to establish long-range order (LRO) in tetragonal anti- 
ferromagnets, so that it is not necessary to invoke the low-temperature orthorhombic 
distortion to justify LRO in La2Cu04 [16]. Even if the NN inter-plane exchange coupling 
J2 had only one value, as for the tetragonal structure, the LRO should be given by quantum 
fluctuations. Notice that in La2Cu04 quantum corrections are expected to be important 
owing to the small value of the spin. 

We next study the low-temperature thermodynamics of the BCT antiferromagnet 
withj, = 0 and smallj2. The reduced energy is given by 

In the low temperature limit we have 

g(Q,) = & l7 dz [ (1 + j 2  cos 2 
0 

and 

where 



Letter to the Editor 4741 

bZ(T) = 62 - (36(3)/8n)(kB T/4/J1 iSi3 (37) 

where uo, u l ,  u2,  62 are given by (25)-(28) and C(3) = 1.202. 
Notice that the minimum of the reduced free energy (33) corresponds to Q, = 0 or 

Q, = n / c  depending on the sign of b2(T), which is positive at low temperature and 
becomes negative at higher temperature. Indeed (37) may be written 

b,(T)  = 0.065062 - 0.14348(k~T/4/]1/S)~. (38) 
Equation (38) indicates that Q, = 0 is stable for T < 1.53653(21J1/S/kB), that is to say, 
the stable phase corresponds to Q, = n/c .  Notice that this value of Tis of the order of 
the NN in-plane exchange coupling so that it is quite large. In La2Cu04, for instance, 
2\Jll = 1300 K, S = 4, so that the temperature at which the free energy (33) becomes Q,- 
independent would be T = 1000 K, which is much higher than the observed TN = 300 K. 
This means that the A m  configuration (Q, = 0) is well established by quantum effects 
and the speculation about LRO entered by orthorhombic distortion is unnecessary [16]. 
The surprising stability of the AFi  configuration supported by quantum fluctuations, 
which are generally expected to be negligible as for magnetic order, can be compared 
with an analogous effect we have found in the RAF model [12]. In addition, in the 
rhombohedral antiferromagnet full frustration destroys the LRO in the classical approxi- 
mation and the LRO is restored by the zero-point motion, the tetragonal and the rhombo- 
hedral antiferromagnets, however, show a different thermal behaviour. Indeed, in the 
RAF model we have found that thermal fluctuations contribute to the free energy as 
j2(kBT/lJ11)3, while the zero-point energy is of order j3 where j = IJ’/J1/,Jl and]’ are the 
in-plane and out-of-plane interactions, respectively. The temperature at which the free 
energy becomes Q,-independent is consequently of order j1I3, so that it can be quite 
small and a typical behaviour due to the infinite degeneracy of the classical approximation 
can appear in the intermediate temperature range. This possibility is ruled out for 
the tetragonal model because the scale of temperature is determined by the in-plane 
exchange interaction J1. 

We have obtained the zero-temperature phase diagram of the BCT antiferromagnet 
in the classical approximation. Infinite degeneracy is found for the physically interesting 
range of parameters - 1 < j2 < 1, j3 = 0. In this range LRO is destroyed by a catastrophic 
magnon population number corresponding to the soft lines where k E TQ, TQ being the 
locus of the infinite wavevectors Q characterising the infinite inequivalent isoenergetic 
helices that minimise the energy of the model in the classical approximation. We have 
found that the zero-point motion enters a modulation in the ground-state energy, 
establishing the AF1 configuration corresponding to Q, = Qy = n / u ,  Q, = 0, We have 
found that this order due to quantum disorder is quite stable against thermal fluctuations. 
This result is of particular interest as concerns the magnetic order of La2Cu04 where the 
AF1 magnetic order can be understood as a consequence of quantum effects, whereas 
orthorhombic distortion could play a minor role. 

Finally we stress the interest of performing MC simulation for the study of the critical 
behaviour of this model. Work of this kind has already been performed in the classical 
approximation and interesting critical properties were found, neglecting the in-plane 
exchange coupling J1 [8,9]. We stress that J1 can be quite relevant, as is the case in 
La2Cu04. Moreover, the BCT antiferromagnet for - 1 < j2 < 1, j3 = 0 is very sensitive to 
quantum effects that are generally neglected both in numerical and in renormalisation 
group analysis. Our model could show very interesting critical behaviour of a quantum 
nature. 



Letter to the Editor 

References 

[l] Bednorz J G and Muller K A 1986 2. Phys. B 64 189 
[2] Coqblin B 1977 The Elelctronic Structure of Rare Earth Metals and Alloys: The Magnetic Heavy Rare 

[3] Dietrich 0 W and Als-Nielsen J 1967 Phys. Rev. 162 315 
141 Loh E ,  Chien C L and Walker J C 1974 Phys. Lett. 49A 357 
[5] Eckert J and Shirane G 1976 Solid State Commun. 19 911 
[6] Barak Z and Walker M B 1982 Phys. Rev.  B 25 1969 
[7] Dzyaloshinskii I E 1977 Sou. Phys.-JETP45 1014 
[8] Diep H T 1988 Europhys. Lett. 7 725 
[9] Diep H T 1989 Phys. Rev. B 39 397 

Earths (London: Academic) 

[lo] Rastelli E and Tassi A 19861. Phys. C: Solid State Phys. 19 L423 
[ 111 Rastelli E and Tassi A 1987 J .  Phys. C: Solid State Phys. 20 L303 
[12] Rastelli E and Tassi A 1988 J .  Phys. C: Solid State Phys. 21 L35 
[13] Endoh Y 1989 Physica B 156-7 839 and references therein 
[14] Borsa F and Tognetti V 1988 Magnetic Properties of Matter (Singapore: World Scientific) pp 156-204 
[15] Rastelli E and Tassi A 1986J. Phys. C: Solid State Phys. 19 1993 
[16] Xue W, Grest G S, Cohen M H, Sinha S K and Soukoulis C 1988 Phys. Rev. B 38 6868 


